Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 10(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392826

RESUMEN

Nitric oxide (NO) is synthesized in all kingdoms of life, where it plays a role in the regulation of various physiological and developmental processes. In terms of endogenous NO biology, fungi have been less well researched than mammals, plants, and bacteria. In this review, we summarize and discuss the studies to date on intracellular NO biosynthesis and function in fungi. Two mechanisms for NO biosynthesis, NO synthase (NOS)-mediated arginine oxidation and nitrate- and nitrite-reductase-mediated nitrite reduction, are the most frequently reported. Furthermore, we summarize the multifaceted functions of NO in fungi as well as its role as a signaling molecule in fungal growth regulation, development, abiotic stress, virulence regulation, and metabolism. Finally, we present potential directions for future research on fungal NO biology.

2.
J Fungi (Basel) ; 9(10)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37888241

RESUMEN

While the biological role of naturally occurring nitric oxide (NO) in filamentous fungi has been uncovered, the underlying molecular regulatory networks remain unclear. In this study, we conducted an analysis of transcriptome profiles to investigate the initial stages of understanding these NO regulatory networks in Neurospora crassa, a well-established model filamentous fungus. Utilizing RNA sequencing, differential gene expression screening, and various functional analyses, our findings revealed that the removal of intracellular NO resulted in the differential transcription of 424 genes. Notably, the majority of these differentially expressed genes were functionally linked to processes associated with carbohydrate and amino acid metabolism. Furthermore, our analysis highlighted the prevalence of four specific protein domains (zinc finger C2H2, PLCYc, PLCXc, and SH3) in the encoded proteins of these differentially expressed genes. Through protein-protein interaction network analysis, we identified eight hub genes with substantial interaction connectivity, with mss-4 and gel-3 emerging as possibly major responsive genes during NO scavenging, particularly influencing vegetative growth. Additionally, our study unveiled that NO scavenging led to the inhibition of gene transcription related to a protein complex associated with ribosome biogenesis. Overall, our investigation suggests that endogenously produced NO in N. crassa likely governs the transcription of genes responsible for protein complexes involved in carbohydrate and amino acid metabolism, as well as ribosomal biogenesis, ultimately impacting the growth and development of hyphae.

3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901932

RESUMEN

Although molecular regulation of cellulolytic enzyme production in filamentous fungi has been actively explored, the underlying signaling processes in fungal cells are still not clearly understood. In this study, the molecular signaling mechanism regulating cellulase production in Neurospora crassa was investigated. We found that the transcription and extracellular cellulolytic activity of four cellulolytic enzymes (cbh1, gh6-2, gh5-1, and gh3-4) increased in Avicel (microcrystalline cellulose) medium. Intracellular nitric oxide (NO) and reactive oxygen species (ROS) detected by fluorescent dyes were observed in larger areas of fungal hyphae grown in Avicel medium compared to those grown in glucose medium. The transcription of the four cellulolytic enzyme genes in fungal hyphae grown in Avicel medium was significantly decreased and increased after NO was intracellularly removed and extracellularly added, respectively. Furthermore, we found that the cyclic AMP (cAMP) level in fungal cells was significantly decreased after intracellular NO removal, and the addition of cAMP could enhance cellulolytic enzyme activity. Taken together, our data suggest that the increase in intracellular NO in response to cellulose in media may have promoted the transcription of cellulolytic enzymes and participated in the elevation of intracellular cAMP, eventually leading to improved extracellular cellulolytic enzyme activity.


Asunto(s)
Celulasa , Neurospora crassa , Neurospora crassa/genética , Óxido Nítrico , Celulosa , Celulasa/genética , Proteínas Fúngicas/genética
4.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36902069

RESUMEN

We investigated the characteristics of a rollable dielectric barrier discharge (RDBD) and evaluate its effects on seed germination rate and water uptake. The RDBD source was composed of a polyimide substrate and copper electrode, and it was mounted in a rolled-up structure for omnidirectional and uniform treatment of seeds with flowing synthetic air gas. The rotational and vibrational temperatures were measured to be 342 K and 2860 K, respectively, using optical emission spectroscopy. The chemical species analysis via Fourier-transform infrared spectroscopy and 0D chemical simulation showed that O3 production was dominant and NOx production was restrained at the given temperatures. The water uptake and germination rate of spinach seeds by 5 min treatment of RDBD was increased by 10% and 15%, respectively, and the standard error of germination was reduced by 4% in comparison with the controls. RDBD enables an important step forward in non-thermal atmospheric-pressure plasma agriculture for omnidirectional seed treatment.


Asunto(s)
Germinación , Gases em Plasma , Spinacia oleracea , Gases em Plasma/farmacología , Semillas , Espectroscopía Infrarroja por Transformada de Fourier , Agua/farmacología
5.
J Fungi (Basel) ; 8(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36354954

RESUMEN

Enzyme production by microorganisms on an industrial scale has demonstrated technical bottlenecks, such as low efficiency in enzyme expression and extracellular secretion. In this study, as a potential tool for overcoming these technical limits, radio-frequency electromagnetic field (RF-EMF) exposure was examined for its possibility to enhance production of an enzyme, α-amylase, in a filamentous fungus, Aspergillus oryzae. The RF-EMF perfectly resonated at 2 GHz with directivity radiation pattern and peak gain of 0.5 dB (0.01 Watt). Total protein concentration and activity of α-amylase measured in media were about 1.5-3-fold higher in the RF-EMF exposed (10 min) sample than control (no RF-EMF) during incubation (the highest increase after 16 h). The level of α-amylase mRNA in cells was approximately 2-8-fold increased 16 and 24 h after RF-EMF exposure for 10 min. An increase in vesicle accumulation within fungal hyphae and the transcription of some genes involved in protein cellular trafficking was observed in RF-EMF-exposed samples. Membrane potential was not changed, but the intracellular Ca2+ level was elevated after RF-EMF exposure. Our results suggest that RF-EMF can increase the extracellular level of fungal total proteins and α-amylase activity and the intracellular level of Ca2+.

6.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35743111

RESUMEN

For the industrial-scale production of useful enzymes by microorganisms, technological development is required for overcoming a technical bottleneck represented by poor efficiency in the induction of enzyme gene expression and secretion. In this study, we evaluated the potential of a non-thermal atmospheric pressure plasma jet to improve the production efficiency of cellulolytic enzymes in Neurospora crassa, a filamentous fungus. The total activity of cellulolytic enzymes and protein concentration were significantly increased (1.1~1.2 times) in media containing Avicel 24-72 h after 2 and 5 min of plasma treatment. The mRNA levels of four cellulolytic enzymes in fungal hyphae grown in media with Avicel were significantly increased (1.3~17 times) 2-4 h after a 5 min of plasma treatment. The levels of intracellular NO and Ca2+ were increased in plasma-treated fungal hyphae grown in Avicel media after 48 h, and the removal of intracellular NO decreased the activity of cellulolytic enzymes in media and the level of vesicles in fungal hyphae. Our data suggest that plasma treatment can promote the transcription and secretion of cellulolytic enzymes into the culture media in the presence of Avicel (induction condition) by enhancing the intracellular level of NO and Ca2+.


Asunto(s)
Celulasa , Neurospora crassa , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Neurospora crassa/genética
7.
J Fungi (Basel) ; 8(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35205857

RESUMEN

In addition to being key pathogens in plants, animals, and humans, fungi are also valuable resources in agriculture, food, medicine, industry, and the environment. The elimination of pathogenic fungi and the functional enhancement of beneficial fungi have been the major topics investigated by researchers. Non-thermal plasma (NTP) is a potential tool to inactivate pathogenic and food-spoiling fungi and functionally enhance beneficial fungi. In this review, we summarize and discuss research performed over the last decade on the use of NTP to treat both harmful and beneficial yeast- and filamentous-type fungi. NTP can efficiently inactivate fungal spores and eliminate fungal contaminants from seeds, fresh agricultural produce, food, and human skin. Studies have also demonstrated that NTP can improve the production of valuable enzymes and metabolites in fungi. Further studies are still needed to establish NTP as a method that can be used as an alternative to the conventional methods of fungal inactivation and activation.

8.
Foods ; 10(8)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34441665

RESUMEN

Although non-thermal atmospheric pressure plasma is an efficient tool for preventing post-harvest microbial contamination, many studies have focused on the post-treatment of infected or contaminated foods. In this study, we examined the antimicrobial quality of mushrooms pre-treated with a non-thermal atmospheric pressure plasma jet (NTAPPJ) or plasma-treated water (PTW). The CFU (Colony Forming Unit) number of Escherichia coli inoculated on surfaces of mushrooms pre-treated with NTAPPJ or PTW was significantly reduced (about 60-75% for NTAPPJ and about 35-85% for PTW), and the reduction rate was proportional to the treatment time. Bacterial attachment and viability of the attached bacteria were decreased on NTAPPJ-treated mushroom surfaces. This may be caused by the increased hydrophilicity and oxidizing capacity observed on NTAPPJ-treated mushroom surfaces. In PTW-treated mushrooms, bacterial attachment was not significantly changed, but death and lipid peroxidation of the attached bacteria were significantly increased. Analysis of mushroom quality showed that loss of water content was greater in mushrooms treated with NTAPPJ compared to that in those with no treatment (control) and PTW treatment during storage. Our results suggest that pre-treatment with NTAPPJ or PTW can improve the antibacterial quality of mushroom surfaces by decreasing bacterial attachment (for NTAPPJ) and increasing bacterial lipid peroxidation (for both NTAPPJ and PTW).

9.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069725

RESUMEN

Nitrogen fixation is crucial for plants as it is utilized for the biosynthesis of almost all biomolecules. Most of our atmosphere consists of nitrogen, but plants cannot straightforwardly assimilate this from the air, and natural nitrogen fixation is inadequate to meet the extreme necessities of global nutrition. In this study, nitrogen fixation in water was achieved by an AC-driven non-thermal atmospheric pressure nitrogen plasma jet. In addition, Mg, Al, or Zn was immersed in the water, which neutralized the plasma-treated water and increased the rate of nitrogen reduction to ammonia due to the additional hydrogen generated by the reaction between the plasma-generated acid and metal. The effect of the plasma-activated water, with and without metal ions, on germination and growth in corn plants (Zea Mays) was investigated. The germination rate was found to be higher with plasma-treated water and more efficient in the presence of metal ions. Stem lengths and germination rates were significantly increased with respect to those produced by DI water irrigation. The plants responded to the abundance of nitrogen by producing intensely green leaves because of their increased chlorophyll and protein contents. Based on this report, non-thermal plasma reactors could be used to substantially enhance seed germination and seedling growth.


Asunto(s)
Fijación del Nitrógeno/fisiología , Gases em Plasma/farmacología , Semillas/metabolismo , Clorofila/metabolismo , Frío , Germinación/efectos de los fármacos , Germinación/fisiología , Nitrógeno/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Plantones/metabolismo , Agua/metabolismo , Zea mays/metabolismo
10.
Methods Mol Biol ; 2170: 199-212, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32797460

RESUMEN

Due to crucial roles in gene regulation, noncoding small RNAs (sRNAs) of 20-30 nucleotides (nt) have been intensively studied in mammals and plants and are implicated in significant diseases and metabolic disorders. Elucidation of biogenesis mechanisms and functional characterization of sRNAs is often achieved using tools such as separation of small-sized RNA and deep sequencing. Although RNA interference pathways, such as quelling and meiotic silencing, have been well-described in Neurospora crassa, knowledge of sRNAs in other filamentous fungi is still limited compared to other eukaryotes. As a prerequisite for study, isolation and sequence analysis of sRNAs is necessary. We developed a protocol for isolation and library construction of sRNAs of 20-30 nt for deep sequencing in two filamentous fungi, N. crassa and Fusarium oxysporum f.sp. lycopersici. Using 200-300 µg total RNA, sRNA was isolated by size-fractionation and ligated with adapters and amplified by RT-PCR for deep sequencing. Sequence analysis of several cDNA clones showed that the cloned sRNAs were not tRNAs and rRNAs and were fungal genome-specific. In order to validate fungal miRNAs that were imported into the host cell, we developed a straightforward method to isolate protoplasts from tomato roots infected by Fusarium oxysporum f.sp. lycopersici using enzymatic digestion.


Asunto(s)
Fusarium/patogenicidad , Neurospora crassa/patogenicidad , ADN Complementario/genética , ADN Complementario/metabolismo , Fusarium/genética , Regulación Fúngica de la Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/fisiología , Neurospora crassa/genética , Protoplastos/metabolismo
11.
Microb Biotechnol ; 14(1): 262-276, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33151631

RESUMEN

Technical bottlenecks in protein production and secretion often limit the efficient and robust industrial use of microbial enzymes. The potential of non-thermal atmospheric pressure plasma to overcome these technical barriers was examined. Spores of the fermenting fungus Aspergillus oryzae (A. oryzae) were submerged in potato dextrose broth (PDB) (5 × 106 per ml) and treated with micro dielectric barrier discharge plasma at an input voltage of 1.2 kV and current of 50 to 63 mA using nitrogen as the feed gas. The specific activity of α-amylase in the broth was increased by 7.4 to 9.3% after 24 and 48 h of plasma treatment. Long-lived species, such as NO2 - and NO3 - , generated in PDB after plasma treatment may have contributed to the elevated secretion of α-amylase. Observations after 24 h of plasma treatment also included increased accumulation of vesicles at the hyphal tip, hyphal membrane depolarization and higher intracellular Ca2+ levels. These results suggest that long-lived nitrogen species generated in PDB after plasma treatment can enhance the secretion of α-amylase from fungal hyphae by depolarizing the cell membrane and activating Ca2+ influx into hyphal cells, eventually leading to the accumulation of secretory vesicles near the hyphal tips.


Asunto(s)
Aspergillus oryzae , Gases em Plasma , alfa-Amilasas/biosíntesis , Aspergillus oryzae/enzimología , Membrana Celular , Hifa , Microbiología Industrial , Nitrógeno
12.
Free Radic Biol Med ; 156: 57-69, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32561321

RESUMEN

Seed germination and vegetative growth are two important plant growing stages that are vulnerable to physical and biological stress. Improvement in crop germination potential and seedling growth rate generally leads to high crop productivity. Cold plasma is a promising technology used to improve seed germination and growth. Structural changes on tomato seed surface exposed with cold air plasma jet for a different time period (1 min, 5 min, 10 min) was examined by SEM. For in-depth study, different physiological parameter such as seed germination and seedling growth, biochemical parameter such as reactive species status, antioxidants and phytohormone, and molecular analysis of various gene expression was also evaluated. Drought stress tolerance potential of cold plasma primed tomato seedling was also examined under 30% PEG stress. Cold plasma seed priming modulates tomato seed coat and improves the germination efficiency. It also induces growth, antioxidants, phytohormone, defense gene expression, and drought stress tolerance potential of tomato seedling. Cold plasma seeds priming augment the reactive species at a molecular level within seedlings, which changes the biochemistry and physiological parameters of plants by inducing different cellular signaling cascades.


Asunto(s)
Gases em Plasma , Solanum lycopersicum , Homeostasis , Oxidación-Reducción , Plantones/genética , Semillas , Estrés Fisiológico
13.
Front Plant Sci ; 11: 77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117403

RESUMEN

Disease stresses caused by pathogenic microorganisms are increasing, probably because of global warming. Conventional technologies for plant disease control have often revealed their limitations in efficiency, environmental safety, and economic costs. There is high demand for improvements in efficiency and safety. Non-thermal atmospheric-pressure plasma has demonstrated its potential as an alternative tool for efficient and environmentally safe control of plant pathogenic microorganisms in many studies, which are overviewed in this review. Efficient inactivation of phytopathogenic bacterial and fungal cells by various plasma sources under laboratory conditions has been frequently reported. In addition, plasma-treated water shows antimicrobial activity. Plasma and plasma-treated water exhibit a broad spectrum of efficiency in the decontamination and disinfection of plants, fruits, and seeds, indicating that the outcomes of plasma treatment can be significantly influenced by the microenvironments between plasma and plant tissues, such as the surface structures and properties, antioxidant systems, and surface chemistry of plants. More intense studies are required on the efficiency of decontamination and disinfection and underlying mechanisms. Recently, the induction of plant tolerance or resistance to pathogens by plasma (so-called "plasma vaccination") is emerging as a new area of study, with active research ongoing in this field.

14.
RSC Adv ; 11(2): 1057-1065, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35423710

RESUMEN

Three dimensional (3D) copper metal organic frameworks (Cu-MOFs) containing glutarates and bipyridyl ligands (bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethylene, or bpp = 1,3-bis(4-pyridyl)propane) were synthesized by using previously reported hydrothermal reactions or a layering method. All three Cu-MOFs contained well-defined one dimensional (1D) channels with very similar pore shapes and different pore dimensions. The bulk purities of the Cu-MOFs were confirmed using powder X-ray diffraction (PXRD) and infrared spectroscopy (IR) spectra. When the three types of Cu-MOFs were applied to Candida albicans cells and Aspergillus niger spores, an average of about 50-80% inactivation was observed at the highest concentration of Cu-MOFs (2 mg mL-1). The efficiency of the fungal inactivation was not significantly different among the three different types (bpa, bpe, bpp). Treatment of the fungi using Cu-MOFs induced an apoptosis-like death and this was more severe in A. niger than C. albicans. This may be due to elevation of the intracellular level of reactive oxygen species (ROS) in A. niger. Generation of the reactive species in solution by Cu-MOFs was observed. However, there was a dramatic variation in the levels observed among the three types. Our results suggest that Cu-MOFs can produce antifungal effects and induce apoptosis-like death of the fungi, which was probably caused by the elevated level of intracellular reactive species.

15.
Sci Rep ; 9(1): 16080, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31695109

RESUMEN

Plants are very vulnerable to pathogen attacks and environmental stress as they are exposed to harsh environments in natural conditions. However, they have evolved a self-defense system whereby reactive oxygen and nitrogen species (RONS) act as double-edged swords by imposing (at higher concentration) and mitigating (at lower concentration) environmental stress. Cold plasma is emerging as a feasible option to produce a variety of RONS in a controlled manner when amalgamate with water. Cold plasma activated/treated water (PAW) contains a variety of RONS at concentrations, which may help to activate the plant's defense system components. In the present study, we examine the effect of cold atmospheric-air jet plasma exposure (15 min, 30 min, and 60 min) on the water's RONS level, as well as the impact of PAW irrigation, (assigned as 15PAW, 30PAW, and 60PAW) on tomato seedlings growth and defense response. We found that PAW irrigation (priming) upregulate seedlings growth, endogenous RONS, defense hormone (salicylic acid and jasmonic acid), and expression of key pathogenesis related (PR) gene. 30 min PAW contains RONS at concentrations which can induce non-toxic signaling. The present study suggests that PAW irrigation can be beneficial for agriculture as it modulates plant growth as well as immune response components.


Asunto(s)
Gases em Plasma/farmacología , Solanum lycopersicum/efectos de los fármacos , Agua/metabolismo , Riego Agrícola , Ciclopentanos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo
16.
Sci Rep ; 9(1): 14983, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628353

RESUMEN

Three new CoII-coordination polymers (Co-CPs) containing glutarates and bipyridyl ligands, formulated as [Co2(Glu)2(µ-bpa)2]·(H2O)4 (1), [Co4(Glu)4(µ-bpp)2] (2), and [Co2(Glu)2(µ-bpe)2]·(H2O)0.5 (3), were prepared, and their structures were determined by X-ray crystallography. Glutarates bridge CoII ions to form 2D sheets, and the sheets are connected either by bpa or by bpp ligands to form 3D networks 1 and 2, respectively. Both frameworks 1 and 2 are two-fold interpenetrated, and there is no significant void volume in either network. Four glutarates bridge two CoII ions to form chains, and these chains are connected by bpe ligands to form the 2D sheet 3. The antifungal properties of these new Co-CPs were tested against two model fungal pathogens, Candida albicans and Aspergillus niger. Under the maximum concentration of Co-CPs, 2.0 mg mL-1, the inhibition rates of Co-CPs against A. niger were much lower (44-62%) than those (90-99.98%) observed in C. albicans. The results indicate that 1-3 can inactivate C. albicans cells more efficiently than A. niger spores in the same treatment time, and the greater inactivation of C. albicans can be explained by dramatic changes in the morphology of C. albicans cells. We also found that Co-CPs could generate the reactive species NO and H2O2, and these species might play a role in inactivating fungal cells. Additionally, degradation tests confirmed that the leaching of CoII ions from Co-CPs was not significant. The small amount of leached CoII ions and the robust Co-CPs themselves as well as the reactive species generated by Co-CPs can actively participate in fungal inactivation.


Asunto(s)
2,2'-Dipiridil/química , Antifúngicos/farmacología , Cobalto/química , Complejos de Coordinación/farmacología , Glutaratos/química , Estructuras Metalorgánicas/farmacología , Antifúngicos/química , Aspergillus niger/efectos de los fármacos , Candida albicans/efectos de los fármacos , Complejos de Coordinación/química , Cristalografía por Rayos X , Peróxido de Hidrógeno/química , Iones/química , Ligandos , Estructuras Metalorgánicas/química , Estructura Molecular , Óxido Nítrico/química , Polímeros/química
17.
Sci Rep ; 9(1): 11184, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371801

RESUMEN

Poor and unstable culture growth following isolation presents a technical barrier to the efficient application of beneficial microorganisms in the food industry. Non-thermal atmospheric pressure plasma is an effective tool that could overcome this barrier. The objective of this study was to investigate the potential of plasma to enhance spore germination, the initial step in fungal colonization, using Aspergillus oryzae, a beneficial filamentous fungus used in the fermentation industry. Treating fungal spores in background solutions of phosphate buffered saline (PBS) and potato dextrose broth (PDB) with micro dielectric barrier discharge plasma using nitrogen gas for 2 and 5 min, respectively, significantly increased the germination percentage. Spore swelling, the first step in germination, was accelerated following plasma treatment, indicating that plasma may be involved in loosening the spore surface. Plasma treatment depolarized spore membranes, elevated intracellular Ca2+ levels, and activated mpkA, a MAP kinase, and the transcription of several germination-associated genes. Our results suggest that plasma enhances fungal spore germination by stimulating spore swelling, depolarizing the cell membrane, and activating calcium and MAPK signaling.


Asunto(s)
Aspergillus oryzae/crecimiento & desarrollo , Industria de Alimentos/métodos , Técnicas Microbiológicas/métodos , Gases em Plasma , Esporas Fúngicas/crecimiento & desarrollo , Membrana Celular , Potenciales de la Membrana , Viabilidad Microbiana
18.
Cancers (Basel) ; 11(7)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336648

RESUMEN

For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.

19.
Sci Rep ; 9(1): 1044, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30705339

RESUMEN

The inconsistent vitality and efficiency of plant growth promoting bacteria (PGPB) are technical limitations in the application of PGPB as biofertilizer. To improve these disadvantages, we examined the potential of micro Dielectric Barrier Discharge (DBD) plasma to enhance the vitality and functional activity of a PGPB, Bacillus subtilis CB-R05. Bacterial multiplication and motility were increased after plasma treatment, and the level of a protein involved in cell division was elevated in plasma treated bacteria. Rice seeds inoculated with plasma treated bacteria showed no significant change in germination, but growth and grain yield of rice plants were significantly enhanced. Rice seedlings infected with plasma treated bacteria showed elevated tolerance to fungal infection. SEM analysis demonstrated that plasma treated bacteria colonized more densely in the broader area of rice plant roots than untreated bacteria. The level of IAA (Indole-3-Acetic Acid) and SA (Salicylic Acid) hormone was higher in rice plants infected with plasma treated than with untreated bacteria. Our results suggest that plasma can accelerate bacterial growth and motility, possibly by increasing the related gene expression, and the increased bacterial vitality improves colonization within plant roots and elevates the level of phytohormones, leading to the enhancement of plant growth, yield, and tolerance to disease.


Asunto(s)
Presión Atmosférica , Bacillus subtilis/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Gases em Plasma/farmacología , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/metabolismo , Biomasa , Ensayo de Unidades Formadoras de Colonias , Electricidad , Germinación , Oryza/crecimiento & desarrollo , Oryza/microbiología , Oryza/ultraestructura , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/biosíntesis
20.
Sci Rep ; 9(1): 1011, 2019 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-30700784

RESUMEN

In this study, we generated water and phosphate buffer treated with microwave plasma-generated gas in which the major component was nitric oxide (PGNO), and investigated the efficiency of the treated water and buffer in fertilization and sanitation. Real time NO level monitored by an electrode sensor was linearly increased over PGNO injection time, and removal of O2 from liquid before PGNO injection accelerated NO assimilation into liquids. Residual NO was still present 16 h after PGNO injection was stopped. H2O2, NO2-, and NO3- were also detected in PGNO-treated liquids. Spinach plants applied with 10 and 30 times diluted PGNO-treated water and 0.5 mM phosphate buffer showed slightly higher height and dry weight than control after 5 weeks. Plants grown with 10 and 30 times diluted PGNO-treated water exhibited the increased tolerance to water deficiency. Significant anti-microbial activity within 1 h was observed in un-diluted and in half-diluted PGNO-treated water and 0.5 mM phosphate buffer. Our results suggest that water or phosphate buffer containing NO, H2O2, NO2-, and NO3- can be produced by PGNO treatment, and that PGNO-treated water or buffer can be used as a potential fertilizer enhancing plant vitality with sanitation effect.


Asunto(s)
Antiinfecciosos/química , Fertilizantes , Peróxido de Hidrógeno/análisis , Óxido Nítrico/análisis , Spinacia oleracea/crecimiento & desarrollo , Agua/química , Microondas , Nitratos/análisis , Nitritos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...